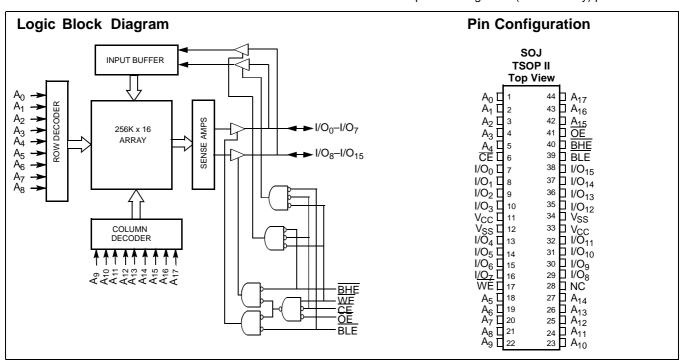


256K x 16 Static RAM

Features

- Temperature Ranges
 - Commercial: 0°C to 70°C
 - Industrial: -40°C to 85°C
 - Automotive-A: –40°C to 85°C
- · High speed
 - t_{AA} = 15 ns
- · Low active power
 - 1540 mW (max.)
- Low CMOS standby power (L version)
 - 2.75 mW (max.)
- 2.0V Data Retention (400 μW at 2.0V retention)
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- Available in Pb-free and non Pb-free 44-pin TSOP II and molded 44-pin (400-Mil) SOJ packages

Functional Description


The CY7C1041BN is a high-performance CMOS static RAM organized as 262,144 words by 16 bits.

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0$ through I/O₇), is written into the location specified <u>on the</u> address pins $(A_0$ through A_{17}). If Byte High Enable (\overline{BHE}) is LOW, then data from I/O pins $(I/O_8$ through I/O_{15}) is written into the location specified on the address pins $(A_0$ through A_{17}).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_0$ through I/O $_{15}$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), the BHE and $\overline{\text{BLE}}$ are disabled ($\overline{\text{BHE}}$, $\overline{\text{BLE}}$ HIGH), or during a write operation ($\overline{\text{CE}}$ LOW, and $\overline{\text{WE}}$ LOW).

The CY7C1041BN is available in a standard 44-pin 400-mil-wide body width SOJ and 44-pin TSOP II package with center power and ground (revolutionary) pinout.

Selection Guide

		-15	-20	Unit				
Maximum Access Time		15	20	ns mA				
Maximum Operating Current Commercial 190 170	170	mA						
	Industrial	210	190					
	Automotive-A		190					
Maximum CMOS Standby Current	Commercial	3	3	mA				
	Commercial L	0.5	0.5					
	Industrial	6	6					
	Automotive-A		6					

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......-55°C to +125°C

Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V CC + 0.5V

DC Input Voltage^[1].....-0.5V to V_{CC} + 0.5V Current into Outputs (LOW)......20 mA

Operating Range

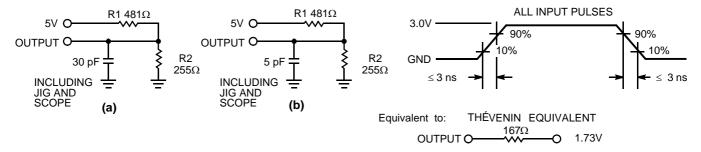
Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	5V ± 0.5
Industrial	-40°C to +85°C	
Automotive-A	-40°C to +85°C	

Electrical Characteristics Over the Operating Range

					15			
Parameter	Description	Test Condition	s	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$V_{CC} = Min., I_{OH} = -4.0 \text{ mA}$	2.4		2.4		V	
V _{OL}	Output LOW Voltage	V_{CC} = Min., I_{OL} = 8.0 mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5	2.2	$V_{CC} + 0.5$	V
V _{IL}	Input LOW Voltage[1]			-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$	$GND \le V_I \le V_{CC}$			-1	+1	mA
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Output	-1	+1	-1	+1	mA	
I _{CC}	CC V _{CC} Operating Supply	$V_{CC} = Max.,$ $f = f_{MAX} = 1/t_{RC}$	Comm'l		190		170	mA
	Current		Ind'l		210		190	mA
			Auto-A				190	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs	$\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \ge V_{IH,} V_{IN} \ge V_{IN} \le V_{IL}, \ f = f_{MAX} \end{aligned}$	' _{IH} or		40		40	mA
I _{SB2}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$,	Comm'l		3		3	mA
	Power-Down Current —CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f = 0	Comm'l L		0.5		0.5	mA
			Ind'I		6		6	mA
			Auto-A				6	mA

Notes:

- 1. $V_{\rm IL}$ (min.) = -2.0V for pulse durations of less than 20 ns. 2. $T_{\rm A}$ is the case temperature.
- 3. Tested initially and after any design or process changes that may affect these parameters.


Document #: 001-06496 Rev. *A Page 2 of 10

Capacitance^[3]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	I/O Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms

Switching Characteristics^[4] Over the Operating Range

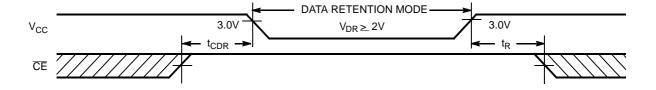
		-	15	-2		
Parameter	Description	Description Min. M		Min.	Max.	Unit
Read Cycle			•		•	•
t _{power} V _{CC} (typical) to the First Access ^[5]		1		1		μS
t _{RC}	Read Cycle Time	15		20		ns
t _{AA}	Address to Data Valid		15		20	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		15		20	ns
t _{DOE}	OE LOW to Data Valid		7		8	ns
t _{LZOE}	OE LOW to Low Z	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		7		8	ns
t _{LZCE}	CE LOW to Low Z ^[7]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		7		8	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		15		20	ns
t _{DBE}	Byte Enable to Data Valid		7		8	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		7		8	ns

Notes:

[+] Feedl

^{4.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 30-pF load capacitance.
5. This part has a voltage regulator which steps down the voltage from 5V to 3.3V internally. tpower time has to be provided initially before a read/write operation is started.

^{6.} t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.

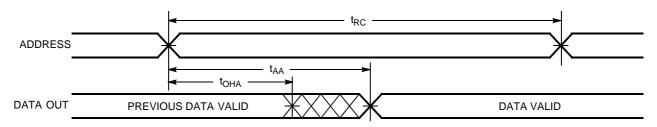

Switching Characteristics^[4] Over the Operating Range (continued)

		-	15	-20		
Parameter	Description	Description Min. Max		Min.	Max.	Unit
Write Cycle ^[8, 9]	•	•	II.	1		
t _{WC}	Write Cycle Time	15		20		ns
t _{SCE}	CE LOW to Write End	12		13		ns
t _{AW}	Address Set-Up to Write End	12		13		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	12		13		ns
t _{SD}	Data Set-Up to Write End	8		9		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		7		8	ns
t _{BW}	Byte Enable to End of Write	12		13		ns

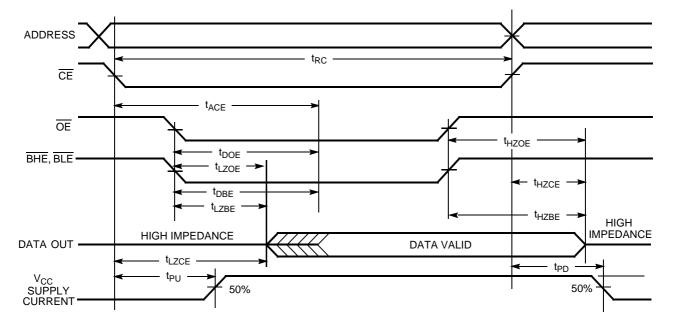
Data Retention Characteristics Over the Operating Range (L version only)

Parameter	Description	Conditions ^[11]	Min.	Max.	Unit
V_{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V,$ $CE \ge V_{CC} - 0.3V,$		200	μΑ
t _{CDR} ^[3]	Chip Deselect to Data Retention Time	CE ≥ V _{CC} = 0.3V, V _{IN} ≥ V _{CC} = 0.3V or V _{IN} ≤ 0.3V	0		ns
t _R ^[10]	Operation Recovery Time	1 III = 100 and at 1 III = and 1	t _{RC}		ns

Data Retention Waveform


- 8. The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

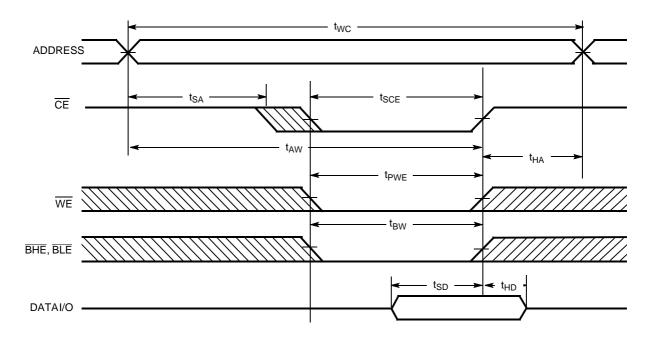
 9. The minimum write cycle time for Write Cycle no. 3 (WE controlled, OE LOW) is the sum of t
- 10. $t_r \le$ 3 ns for the -15 speed. $t_r \le$ 5 ns for the -20 and slower speeds. 11. No input may exceed V_{CC} + 0.5V.



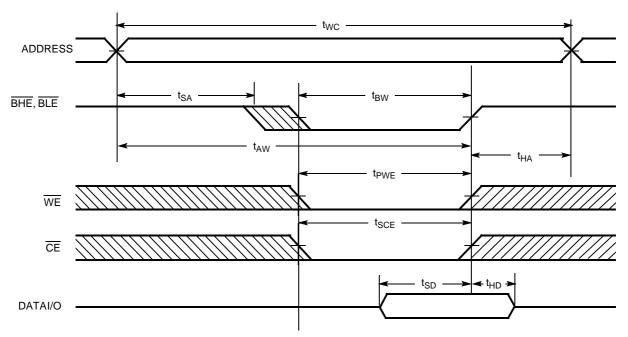
Switching Waveforms

Read Cycle No. 1 $^{[12,\ 13]}$

Read Cycle No. 2 (OE Controlled)[13, 14]



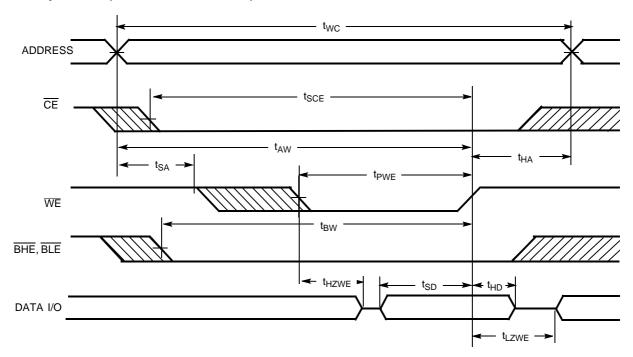
- Notes: 12. <u>Dev</u>ice is continuously selected. \overline{OE} , \overline{CE} , \overline{BHE} , and/or \overline{BHE} = V_{IL} . 13. \overline{WE} is HIGH for read cycle.
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (CE Controlled)[15, 16]

Write Cycle No. 2 (BLE or BHE Controlled)



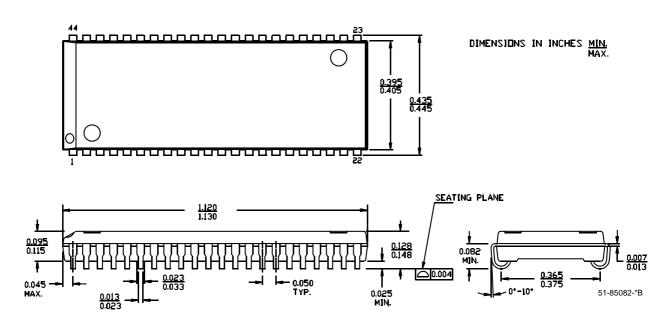
Notes:
15. <u>Data</u> I/O is high impedance if <u>OE</u> or <u>BHE</u> and/or <u>BLE</u>= V_{IH}.
16. If <u>CE</u> goes HIGH simultaneously with <u>WE</u> going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	ВНЕ	I/O ₀ –I/O ₇	I/O ₈ -I/O ₁₅	Mode	Power
Н	Χ	Χ	Χ	Χ	High Z	High Z	Power Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read All bits	Active (I _{CC})
L	L	Н	L	Н	Data Out	High Z	Read Lower bits only	Active (I _{CC})
L	L	Н	Н	L	High Z	Data Out	Read Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write All bits	Active (I _{CC})
L	Х	L	L	Н	Data In	High Z	Write Lower bits only	Active (I _{CC})
L	Х	L	Н	L	High Z	Data In	Write Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

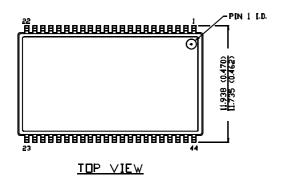

Ordering Information

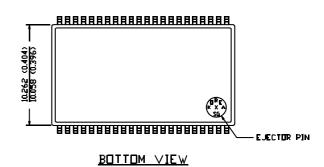
Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C1041BN-15VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1041BN-15VXC	7	44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BN-15ZC	51-85087	44-pin TSOP Type II	
	CY7C1041BN-15ZXC	7	44-pin TSOP Type II (Pb-free)	
	CY7C1041BNL-15ZC	7	44-pin TSOP Type II	
	CY7C1041BNL-15ZXC	7	44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-15ZI	1	44-pin TSOP Type II	Industrial
	CY7C1041BN-15ZXI	1	44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-15VI	51-85082	44-pin (400-Mil) Molded SOJ	
	CY7C1041BN-15VXI	7	44-pin (400-Mil) Molded SOJ (Pb-free)	
20	CY7C1041BN-20VXC	7	44-pin (400-Mil) Molded SOJ (Pb-free)	Commercial
	CY7C1041BNL-20VXC	7	44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BN-20ZC	51-85087	44-pin TSOP Type II	
	CY7C1041BN-20ZXC	7	44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-20ZI	7	44-pin TSOP Type II	Industrial
	CY7C1041BN-20ZXI	7	44-pin TSOP Type II (Pb-free)	
	CY7C1041BN-20VXI	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1041BN-20ZSXA	51-85087	44-pin TSOP Type II	Automotive-A

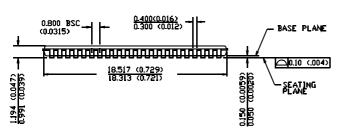
Please contact local sales representative regarding availability of these parts.

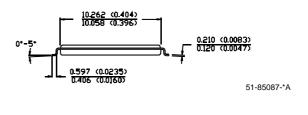
Package Diagrams

44-pin (400-Mil) Molded SOJ (51-85082)


Document #: 001-06496 Rev. *A




Package Diagrams (continued)


44-Pin TSOP II (51-85087)

DIMENSION IN MM (INCH)

All products and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1041BN 256K x 16 Static RAM Document Number: 001-06496					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	424111	See ECN	NXR	New Data Sheets	
*A	498575	See ECN	NXR	Added Automotive-A operating range updated Ordering Information Table	

Document #: 001-06496 Rev. *A